Что такое биосистема? Основные свойства биосистемы. Биоразнообразие. Уровни организации биосистем Структурные элементы биосистемы

Биосистема

, ж.

Биологическая структура, представляющая собой единство закономерно расположенных и функционирующих частей.

В идеале надо создать биосистему, которая была бы зеркальным обменным отображением человека. [Известия 27 окт. 1973].


Малый академический словарь. - М.: Институт русского языка Академии наук СССР . Евгеньева А. П. . 1957-1984 .

Смотреть что такое "биосистема" в других словарях:

    Биосистема … Орфографический словарь-справочник

    1) система, слагаемая (обычно двумя) живыми организмами; 2) система отношений между двумя или несколькими видами организмов; 3) у некоторых авторов синоним экосистемы. См. также Биотические взаимоотношения. Экологический энциклопедический словарь … Экологический словарь

    Сущ., кол во синонимов: 1 система (86) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    биосистема - биологическая система биол. Источник: http://www.regnum.ru/news/418119.html … Словарь сокращений и аббревиатур

    КЛЕТКА - КЛЕТКА. Содержание: Исторический очерк............... 40 Строение К.................... 42 Форма и величина К............. 42 Клеточное тело................ 42 Ядро...................... 52 Оболочка.................... 55 Жизнедеятельность К … Большая медицинская энциклопедия

    - (от эко... и система), термин, введенный в науку А. Тенсли (1935) для обозначения любого единства (самого разного объема и ранга), включающего все организмы (т. е. биоценоз) на данном участке (биотопе) и взаимодействующего с физической средой… … Экологический словарь

    - (Australia), Aвстралийский Cоюз (Commonwealth of Australia), гос во в составе Cодружества (брит.). Pасположено на материке Aвстралия, o. Tасмания и мелких прибрежных o вах: Флиндерс, Kинг, Kенгуру и др. Пл. 7,7 млн. км2. Hac. 14,9 млн.… … Геологическая энциклопедия

    БИО... 1. БИО... [от греч. bios жизнь] Первая часть сложных слов. 1. Обозначает отнесённость чего л. к живым организмам, их состоянию, жизни. Биодатчик, биогенетический, биомолекула, биоритм, биосистема, биосфера, биоэкономика. 2. Обозначает… … Энциклопедический словарь

Эволюция живого привела к формированию существующего ныне на планете биоразнообразия. За всю историю Земли на ней обитало от одного до двух миллиардов видов живых существ, большая часть которых вымерла. Однако и современное многообразие биологических видов потрясающе велико. Ученым известно не менее 1,4 млн. видов, обитающих на планете, в том числе не менее 4000 видов млекопитающиих, 9000 – птиц, 19000 рыб, 750000 насекомых, 210000 цветковых растений. Учитывая еще не описанные виды, общее число видов оценивается в диапазоне 5-30 млн. (Грант, 1991). «Полагают, что сейчас на нашей планете обитает свыше миллиона видов животных, 0,5 млн. вида растений, до 10 млн. микроорганизмов, причем эти цифры занижены» (Медников, 1994).

Такие различные организмы, как крошечные бактерии и гигантские синие киты, одноклеточные корненожки и человекообразные обезьяны, цветковые растения и насекомые – все входят в состав единого планетарного «тела биоса». Подобно целостному организму, биос зависит в своем существовании от гармоничного, слаженного функционирования всех “систем органов”. В роли “органов” и их “систем” выступают разнообразные группы живых существ. Описание этого био-разнообразия в различных его аспектах и гранях весьма важно как с точки зрения охраныэтого разнообразия, так и в концептуальном плане. Для биополитики особенно существенное значение имеет приложе­ние принципа, аналогичного “биоразнообразию”, к политическим системам с их плюрализмом, взаимодополни­тель­ностью и взаимозависимостью. Понятие “биоразнообразие” включает несколько различных аспектов.

3.3.1. Разнообразие видов живого с точки зрения систематики. Виды группируются в роды, роды – в семейства и т.д., пока мы не доходим до самых крупных из основных подразделений многообразия живого – империй, которые подразделяются на царства.. Наиболее фундаментальное различие современные систематики усматривают между прокариотами («доядерными») иэукариотами («истинноядерными»). Это и есть две империи: к империи прокариот (Prokaryota ) относятся микроскопические существа – бактерии; к империи эукариот (Eukaryota ) -- все остальные формы жизни – простейшие, грибы, растения, животные (включая человека).

«Прокариотная клетка отличается тем, что имеет одну внутреннюю полость, образуемую элементарной мембраной, называемой клеточной, или цитоплазматической (ЦПМ). У подавляющего большинства прокариот ЦПМ - единственная мембрана, обнаруживаемая в клетке. В эукариотных клетках в отличие от прокариотных есть вторичные полости. Ядерная мембрана, отграничивающая ДНК от остальной цитоплазмы, формирует вторичную полость… Клеточные структуры, ограниченные элементарными мембранами и выполняющие в клетке определенные функции, получили название органелл. В клетках прокариот органеллы, типичные для эукариот, отсутствуют. Ядерная ДНК у них не отделена от цитоплазмы мембраной.» (Гусев, Минеева, 2003). В пределах каждой империи различные авторы выделяют различное количество царств. Так в классификации Уиттекера (Whittaker, 1969) империя эукариот дробится на 4 царства – протисты, или простейшие, грибы, растения и животные, а прокариоты (синоним – монеры) считаются единым царством. В нижеследующей классификации от схемы Уиттекера допущено единственное отступление – прокариоты поделены на 2 царства – эубактерий и архей (архебактерий), что соответствует фундаментальному характеру различий между ними.

1. Империя прокариот (Prokaryota ). Организмы, в большинстве случаев представляющие собой одну клетку. Недостижимое для других групп разнообразие условий обитания и часто невероятная пластичность. Типы питания весьма разообразны. Их характеризуют по природе источников трех необходимых компонентов жизни: энергии, углерода и водорода (источника электронов). По источнику энергии различают две категории организмов: фототрофы (использующие солнечный свет) и хемотрофы (использующие энергию химических связей в питательных веществах. По источнику углерода выделяют автотрофы (СО 2) и гетеротрофы (органическое вещество). Наконец, по источнику водорода (электронов) различают органотрофы (потребляющие органику) и литотрофы (потребляющие производные литосферы – каменной оболоочки Земли: Н 2 , NH 3 , H 2 S, S, CO, Fe 2+ и т.д.) По такой классификации зеленые растения (см. ниже) – фотолитоавтотрофы, животные и грибы – хемоорганогетеротрофы. В мире прокариот встречаются самые разнообразные сочетания. Прокариоты могут быть далее подразделены на

· Царство эубактерии (Eubacteria, «обычные бактерии»). Клеточная стенка обычно содержит специфическое вещество – пептидогликан (муреин). Царство включает разнообразных представителей – от мирных сожителей человека типа кишечной палочки (Escherichia coli ) до опасных патогенов (возбудителей чумы, холеры, бруцеллеза и др.), от обогатителей почвы ценными азотистыми веществами (например, представители рода Azotobacter ) до окислителей железа (железобактерии Thiobacter ferooxidans ) и тех, кто способен фотосинтезировать подобно растениям, в том числе и с выделением кислорода (цианобактерии). В последние годы в некоторых работах царство «бактерии» делят на несколько самостоятельных царств.

· Царство археи(или архебактерии – Archaea или Archaebacteria ), обитающие в экзотических условиях (одни в полном отсутствие кислорода; другие – в насыщенным растворе соли; третьи – при 90-100 о С и т.д.) и имеющие своеобразное строение клеточной стенки и внутриклеточных структур. По некоторым признакам (например, организация рибосом) археи ближе не к про-, а к эукариотам («сестринская связь» архей и эукариот, см. Воробьева, 2006).

2. Империя эукариот (Eukaryota ). Как уже подчёркивалось, в империю эукариот входят организмы с вторичными полостями клеткок – органеллами, включая и ядро. Эукариоты включают в себя царства: простейшие, грибы, растения и животных:

· Царство простейшие (Protista ) Одноклеточные или колониальные (рыхлое объединение способных существовать самостоятельно клеток) организмы, имеющие клеточное ядро, окруженное двойной мембраной. По способу получения энергии делятся на группы, напоминающие 3 царства, данные ниже (есть протисты, подобные грибам, растениям и животным).

· Царство растения (Plantae ). Многоклеточные организмы, способные к усвоению энергии света (фотосинтезу) и потому часто не нуждающиеся в готовых органических соединениях (ведущие автотрофный образ жизни). Вода, минеральные соли и в некоторых случаях органика поступают путем всасывания. Растения поставляю органику для других царств живого и вырабатывают живительный кислород (последняя роль в известной мере выполняется также прокариотами – цманобактериями).

· Царство животные (Animalia ).Многоклеточные организмы, питающиеся готовыми органи­ческими соединениями (ведут гетеротрофный образ жизни), которые они приобретают посредством активного питания и передвижения, причем преимущественным объектом питания служат живые организмы. В рамках данной книги особый интерес представляют организмы с ярко выраженной социальностью – способностью формировать сложные надорганизменные системы с разделением функций, координацией поведения особей в масштабе всей системы. Таковы колониальные кишечнополостные, чьи колонии порой напоминают единый организм (сифонофоры), насекомые типа термитов, пчел или муравьев, чья социальная жизнь издавна вызывала восхищение у мыслителей и навевала аналогии с человеческим социумом (например, отраженную в басне XVIII века «О пчёлах», принадлежащей перу Мандевилля) и, наконец, хордовые, особенно млекопитающие.

«Командные посты» в биосфере Земли занимают представители типа хордовых: рыбы, земноводные, пресмыкающиеся, птицы и млекопитающие во главе с человеком. Для них характерны следующие признаки:

· Хорда (спинная струна) – ось внутреннего скелета, упругий гибкий стержень.У высших хордовых имеется лишь на ранних стадиях развития зародыша, вытесняясь затем позвоночником.

· Центральная нервная система (спинной и головной мозг) имеет трубчатое строение и образуется как впячивание спинной стороны зародыша.

· У всех хордовых, по крайней мере на стадии зародыша, имеются жаберные щели – парные поперечные отверстия, прободающие стенку глотки.

Самый высокоорганизованный класс хордовых – млекопитающие (звери). Они имеют постоянную высокую температуру тела, высокоразвитую нервную систему. В первую очередь головной мозг. Рождают детенышей, которые развиваются в теле матери, получая питание через плаценту, а после рождения вскармливаются молоком» (Медников, 1994).

3.3.2. Разнообразие внутри одной таксономической группы живых существ , в частности внутри одного вида (скажем, разнообразие внутри вида кошка домашняя). Это разнообразие, в свою очередь, включает в себя ряд важных аспектов. Так, можно говорить о разнообразии группировок особей внутри одного и того же вида живого. Например, все обезьяны шимпанзе относятся к одному виду, но наблюдаются различия в поведении и языках общения, а также ритуалах у разных групп шимпанзе. Приматолог де Вал отмечает, что только в одной из изученных им групп шимпанзе обезьяны приветствовали друзей, поднимая над головой руки и пожимая их. Не менее важно разнообразие и внутри одной такой группы - будь то прайд львов или колония микроорганизмов.

Во-первых, особи различаются по возрастам (“возрастная пирамида”), а во многих случаях по половым характеристикам. Даже у бактерий могут быть два типа особей - F+ и F- клетки (у кишечной палочки, населяющей кишечник человека).

Во-вторых, имеются бесчисленные индивидуальные вариации. Биополитики обращают внимание на то, что и у человека в семьях велики индивидуальные различия, например, между братьями. И в человеческом обществе, и в группах любого другого вида живого такое разнообразие представляет результат сложного взаимодействия врожденных (генетических) характеристик и влияния различий в условиях жизни (факторов окружающей среды). Отметим, что даже в одной семье у человека в разных условиях живут старшие и младшие братья, любимые и нелюбимые дети.

На все эти индивидуальные отличия налагаются еще различия, диктуемые распределением ролей и функций во всей группе, семье, колонии, вообще биосоциальной системе. И тогда оказывается, что для разных социальных ролей лучше подходят особи с различными задатками, а также разные роли могут быть распределены по возрастам и полам индивидов. Например, при всем своем “эгалитаризме” (равенстве по богатству, авторитету, рангу, см. ниже, 3.7) первобытное общество учитывало возрастные, половые и просто индивидуальные различия. Мужчины в основном охотились, женщины - собирали плоды, коренья, ягоды и в большей мере участвовали в воспитании детей; люди преклонного возраста преимущественно становились старейшинами, шаманами, в то же время вождь во время войны чаще был молодым человеком. Люди с индивидуальными талантами могли их развивать - художественные дарования делать наскальные рисунки, искусные танцоры и рассказчики веселить соплеменников своими плясками и повествованиями, соответ­ственно.

Поэтому биоразнообразие во всех своих гранях поистине является необходимой предпосылкой оптимального, гармоничного функционирования целого анасамбля живого - биосферы. Организмы с различными характеристиками и требованиями к среде обитания, вступающие в разнообразные отношения друг с другом, могут быть функционально специализированны в рамках "тела биоса". Каждый из биологических видов может представлять собой жизненно важный орган этого "тела". Есть многочисленные примеры отрицательных глобальных последствий уничтожения одного только биологического вида.

3.3.3. Уровни организации живых организмов. Одним из важных аспектов биоразнообразия служит многоуровневость живых объектов. Читателю рекомендуем вернуться на мгновение в конец раздела 2.1 выше, где мы коснулись вопроса о многоуровневости (многослойности) мира в целом. В рамках приведенной нами схемы Н. Гартмана живое соответствует «органическому» слою (хотя и не исчерпывается им, проявляя элементы «душевного» и даже «духовного» -- на чем собственно и зиждется возможность сопоставительного биополитического подхода к человеку и другим формам живого). Но, даже оставаясь в рамках органического слоя (уровня), мы можем выделить в нем несколько уровней второго порядка – их Гартман (Hartmann, 1940) называл «ступенями бытия» (Seinsstufen). Эти «ступени бытия» – уровни внутри биологического – служат критерием различения живых объектов. Многоклеточный организм (растение, животное, гриб) отличается от одноклеточного, ибо имеет внутри себя дополнительные уровни организации (тканевый, организменный – чуть ниже мы приведём наш вариант шкалы этих уровней).

Любой единичный биологический объект (клетка бактерии, цветущее растение, обезьяна бонобо и др.) представляет собой сложно организованную систему, состоящую хотя бы из нескольких уровней, из числе приведённых ниже. Ситуация несколько напоминает русскую матрёшку, в которой находятся более маленькие матрёшки. Разные авторы, кроме упомянутого критерия «части и целого», вводят различные другие критерии вычленения уровней (размер, сложность организации и др.), предпочитают выделять разные уровни в качестве главных. Были предложены разнообразные конкретные схемы уровней живого, где выделяется от 4 до 8 (например, см. Кремянский, 1969; Сетров, 1971; Miller, 1978; Miller, Miller, 1993) уровней. Ниже мы приводим свою схему, как бы представляющую общий знаменатель взглядов различных авторов:

1. Молекулярный (молекулярно-биологический). Молекулы, которые служат строительными блоками биосистем (роль белков, полисахаридов и других крупных органических молкул – биополимеров), носителями наследственной информации (нуклеиновые кислоты – ДНК и РНК), сигналами для коммуникации (часто малые органические молекулы), формами запасания энергии (в первую очередь АТФ) и др.

2. Субклеточный (внутриклеточный). Сложенные из молекул микроструктуры (мембраны, органеллы и др.), входящие в состав живой клетки.

3. Клеточный. Уровень имеет особое значение, так как клетка (в отличие от отдельной молекулы или органеллы) есть элементарная единица жизни. Многие особи всю жизнь существуют в виде одной клетки – одноклеточные. У многоклеточных клетки не расходятся, а образуют единый организм. Например, человеческий организм состоит примерно из 10 15 клеток.

4. Органно-тканевый уровень. Принцип «матрешки» работает и дальше. У многоклеточных существ однотипные клетки формируют ткани, из которых состоят органы растений (лист, стебель и др.) и животных (сердце, печень и др.).

5. Организменный уровень. Целое живое существо (заметим, что у одноклеточных форм жизни, например, простейших, бактерий, понятия клеточный и организменный уровни тождественны друг другу). В рамках этого уровня рассматриваются не только специфические структуры и функции того или иного живого организма, но и поведение биологических индивидов, гамма их взаимоотношений между собой, что ведет к формированию надорганизменных (биосоциальных) систем. Здесь мы видим переход к еще более высоким – надорганизменным – уровням организации

6. Популяционный уровень. Уровень группировок особей одного вида (популяций).

7. Экосистемный (биоценотически-биогеоценотический) уровень. Уровень сообществ многих видов организмов, формирующих единую локальную систему (биоценоз), причем часто в рассмотрение включаются также окружающая организмы среда (ландшафт и др.); в этом случае вся система называвется экосистемой (биогеоценозом).

8. Биосферный уровень. Соответствует всей совокупности живых организмов планеты, рассмотренной как целостная система (биосфера, биос в терминологии Агни Влавианос-Арванитис).

Это общий очерк уровней живого, классификация которых значительно различается у разных исследователей, которые привносят в уровневые классификации свои специфические интересы. Более того, новые научные открытия время от времени вводят в обиход новые, ранее не признававщиеся уровни. Пример: исследования лабораторий В.Л. Воейкова и Л.В. Белоусова на биологическом факультете МГУ, вслед за более ранними работами Н.Г. Гурвича позволили предположить наличие еще одного уровня биоса (между молекулярно-биологическим и субклеточным) – уровня молекулярных ансамблей. Подобные ансамбли (например, молекула ДНК) уже обладают многими “живыми” свойствами, такими как память, активность, целостность (когерентность).

В предлагаемой ниже таблице обозначены важнейшие характеристики уровней организации живого и их социальные приложения. В принципе каждый из основных уровней организации биосистем имеет биополитически важные аспекты. Каждый уровень допускает достаточно плодотворные аналогии и экстраполяции, дающие пищу для ума для исследователей человеческого социума с его политическими системами.

Таблица. Уровни организации живого и их биополитическое значение

Уровни организации Биополитически важные аспекты
Молекулярно-биологический Биополимеры (нуклеиновые кислоты, белки и др.). Молекулярная генетика. Генетика поведения человека. Психогенетика. Генное разнообразие человечества. Расы. Генетические технологии
Клеточный, органно-тканевый (внутриорганизменный) Регуляторные факторы. Межклеточная коммуникация. Нейромедиаторы. Гормоны. Функционирование нервной системы и ее блоков (модулей). Нейрофизиология психики и поведения.
Организменный, популяционный (биосоциальный) Поведение вообще. Социальное поведение и его политические аспекты. Биосоциальные системы. Иерархические и горизонтальные (сетевые) структуры. Политическая система с биосоциальной (биополитической) точки зрения.
Экосистемный, биосферный Разнообразие экосистем. Охрана био-окружения как задача биополитики. Экологический мониторинг. Экосистемы внутри человеческого организма (микробиота) и их роль в поддержании соматического, психического и социального здоровья людей.

На молекулярно-биологическом уровне биополитический интерес представляют так называемые шапероны (от англ. chaperon – пожилая дама, сопровождающая молодую девушку) – белковые молекулы, которые обеспечивают функционально правильную укладку других молекул (например, ферментов). Представляется, что самоорганизующиеся политические движения современности, в том числе всякого рода сетевые структуры (см. о них 5.7 ниже) должны находиться под влиянием некоторых помогающих организаций-«шаперонов», которые направляли бы их деятельность в разумное русло. Создание аналогичных «шаперонов» на уровне целого государства, которые бы направляли демократический процесс по наиболее конструктивному руслу, не отнимая у участников этого процесса простор для деятельности, а только создавая им оптимальные условия, в том числе и в плане жизненных потребностей людей (осуществляя «биополитику» в понимании М. Фуко) – вот, по мысли автора данной книги, «рациональное зерно» политического термина управляемая демократия.

На клеточном уровне несомненную ценность представляет предложенное Р. Вирховым в XIX в. (см. 1.1) сравнение тканей в составе многоклеточного организма с «клеточными государствами», а закономерностей роста и деления клеток – с социальными нормами поведения граждан в государстве. Сравнение целого организма с политической системой – базисная аналогия для организмического подхода в социологии и политологии (см. Франчук, 2005а, б).

Однако наибольшее значение для биополитики имеет сопоставление биосистем на их популяционном уровне с объектами политологии. Взаимодействие индивидов в составе биосоциальных систем в сопоставлении с политическими системами человеческого общества будет основной темой четвертой и пятой глав настоящей книги.

Интерес представляют, впрочем, и еще более высокие уровни организации биосистем. Например, представляя генетически единый биологический вид, человечество тем не менее состоит из различных культур (с разными нормами поведения). С известным правом человечество в культурном плане можно рассматривать как аналог многовидовой ассоциации (биоценоза).

Основными биологическими системами является клетка, организм, популяция, вид, экосистема, биогеоценоз, биосфера. Формирование и обобщения знаний о биосистемы можно организовывать в таких аспектах, как структурная организация, функциональная организация и основные свойства.

Структурная организация биосистемы - это имеющийся упорядоченное состояние существования составных частей системы. Анализ структурной организации осуществляется с помощью метода классификации - многоступенчатого, последовательного разделения исследуемой системы с целью получения новых знаний о ее построения, состав, связей. Описание структуры биосистемы - это выделение элементов (подсистем, компонентов) биосистемы, которые будут исследоваться, то есть проведения морфологического анализа. Поскольку биосистемы являются открытыми,

через них проходят потоки вещества, энергии и информации и они испытывают постоянного воздействия внешней среды, в структуре биосистем целесообразно выделять биотических и абиотических компонентов.

Функциональная организация биосистемы - это слаженное функционирование взаимосвязанных составных частей системы. Изучение функциональной организации осуществляется путем определения функций, которые каждый из выделенных элементов (подсистем, компонентов) выполняет в исследуемом целостном процессе, то есть проведение функционального анализа.

Основные свойства биосистем выражают сущность системы в отношениях с другими системами, поэтому для определения свойств следует установить закономерные взаимосвязи, которые формируются между выделенными элементами (подсистемами, компонентами) в условиях их функционирования как целостности, то есть провести структурный анализ.

Клетка - элементарная биологическая система, основная структурная и функциональная единица живого, которая способна к саморегуляции, самообновлению и самовосстановлению. Структурная организация. Основными компонентами клетки является поверхностный аппарат, цитоплазма и ядро (нуклеоид), которые построены по определенным подсистем и элементов. Существуют два типа организации клеток - прокариотических и эукариотический. Базовым уровнем организации для клеток является молекулярный уровень. Функциональные связи. Любая функция клетки является следствием согласованной работы всех ее частей и компонентов. Организация и функционирование всех компонентов клетки связаны прежде всего с биологическими мембранами. Внешние взаимосвязи между клетками происходят путем выделения химических веществ и установления контактов, а внутренние между элементами клетки обеспечиваются гиалоплазмы. Большинство клеток многоклеточного организма специализируются на выполнении одной главной функции. Основные свойства. Клетке присущи такие же свойства, как другим биосистемы, но они будут отличаться проще характеру осуществления. Клетка является элементарной биосистемой, поскольку именно на уровне клеток проявляются все свойства жизни. Определяются эти свойства структурно-функциональной организацией биомембран, цитоплазмы и ядра.

Организм - открытая биологическая система, которая благодаря системам регуляции и приспособительным механизмам может сохранять свою целостность и упорядоченность и относительно самостоятельно существовать в определенной среде жизни. Структурная организация. У одноклеточных и колониальных организмов - клеточный уровень организации, многоклеточные организмы объединяют клеточный, тканевый, органный и системный уровне, благодаря чему организменный уровень организации живых систем является самым разнообразным из всех других. Элементарной структурно-функциональной единицей организмов является клетка. Функциональные связи: а) поскольку в осуществлении определенной жизненной функции участвуют клетки, ткани, органы, системы органов, то данная функция будет иметь более сложный и совершенный характер; 6) специализация составных частей организма на выполнении определенной функции делает их зависимыми от других частей, поэтому вместе с дифференциацией идут процессы интеграции, благодаря которым между частями формируются внутренние связи (физиологические, генетические, нервные, гуморальные и др.), Обусловливающих подчинения их организма как целостной системе. Основные свойства. Поскольку в свойствах объекта отображается его внутренняя структурно функциональная сущность, то делаем вывод об осложнениях и разнообразия основных свойств организмов (например, размножение может быть бесполым, половым и вегетативным).

Популяция - генетически открыта биологическая система, группа вильносхрещуваних между собой особей одного вида, проживающих длительное время на определенной территории и относительно изолированы от других таких же групп. Структурная организация. Организмы делятся на группы в зависимости от возраста, пола, распределения в пространстве, особенностей поведения и т.д., что позволяет выделять, соответственно, возрастную, половую, пространственную, Этологические структуру популяций. Этот раздел обусловливает выделение таких внутришньопопуляцийних подразделений, как екоелементы, биотипы. Элементарной структурной единицей популяций является организмы. Функциональные связи. Разная структура популяций обусловливает различные взаимосвязи между организмами (например, репродуктивные, трофические, топические, этологические и др.), Что позволяет им достаточно часто образовывать содружественные формирования (например, семьи, стаи, стада, колонии) для совершенного осуществления жизненных функций. Основные свойства зависят от таких признаков популяций, как численность, рождаемость, смертность, прирост, биомасса, плотность, которые в значительной степени формируются под влиянием условий существования организмов популяций. Каждая популяция как целостная система обладает механизмами саморегуляции, самообновлению и самовосстановлению особей, входящих в нее, поэтому в пределах популяций существуют сложные системы сигналов, которые определяют поведение одной особи относительно другой.

Вид - совокупность популяций особей, которым свойственны: а ) морфофизиологической сходство; б ) свободное внутривидовой скрещивания; в ) образования плодовитого потомства; г ) несхрещуванисть с другими видами; д ) общая территория обитания - ареал; е ) приспособленность к условиям существования в пределах ареала; есть ) общее происхождение. Структурная организация. В пределах ареала вида выделяют следующие основные внутривидовые структуры: подвиды, екотипы и популяции. Элементарной структурной единицей вида является популяции. Функциональные связи: а) реализация жизненных функций на уровне вида осуществляется отличными организмами, индивидуальные особенности которых обеспечиваются ненаследственной и наследственной изменчивостью; б) большое значение приобретает внутривидовая конкуренция, влечет естественной отбор; в) расширяются внешние экологические связи с абиотической, биотических и антропогенным средой. Основные свойства. Основным критерием, определяющим специфичность свойств вида, является генетическое единство разнообразия внутри вида и репродуктивная изоляция (несхрещуванисть) от других видов, что делает вид генетически закрытой системой. Единство разнообразия обеспечивает высокую степень устойчивости и адаптивности, что делает вид основной формой организации живой материи.

Экосистема - совокупность организмов разных видов и среды их обитания, связанные обменом вещества, энергии и информации. Биогеоценоз - определенная территория с однородными условиями существования, населенная организмами различных видов, соединенных между собой средой обитания коловращением веществ и потоком энергии. Структурная организация. В рамках биосистем этого ранга выделяют биотический (биоценоз ) и абиотической (биотоп ) компоненты, связанные между собой коловращением веществ. Элементарной структурной единицей есть виды, которые образуют группировки. Функциональные связи: а) функционирование биосистемы в целом обеспечивают "внутренний" биологический круговорот веществ и "внешние" потоки вещества, энергии и информации; б) связи между популяциями биоценоза могут быть очень разнообразными (прямыми и косвенными; симбиотических, нейтральными и антибиотическими; трофическими и топическими), но важнейшими являются трофические и энергетические. Основными свойствами является целостность, открытость, устойчивость, саморегуляция и самовоспроизведению.

Биосфера - единственно глобально экосистема высшего порядка, состав, структура и свойства которой определяются деятельностью организмов. Структурная организация: а) биотический компонент представлен живым веществом - совокупностью организмов нашей планеты; б) абиотический компонент включает химические составляющие и физические условия геологических оболочек: атмо-, гидро- и литосферы; б) элементарной структурно-функциональной единицей является биогеоценозы. Функциональные связи: а) био- и геокомпонентив связаны между собой коловращением веществ в виде биогеохимических циклов, важнейшими свойствами которых является открытость и замкнутость; б) основными функциями живого вещества в биосфере является окислительно-восстановительная, концентрационная и газовая. Основные свойства определяются свойствами живого вещества.

Весь окружающий нас мир - это совокупность природных факторов и антропогенного воздействия, что существуют и меняются на протяжении всей истории человечества. Энтропия разрывает этот мир, но он продолжает существовать в динамическом равновесии. В состоянии, которое очень легко нарушить, и при этом пострадают в первую очередь биосистемы. Что такое биосистема в биологии, каковы ее уровни и составляющие - тема данной статьи.

Академические термины

В систему объединяют функциональные элементы, которые связаны между собой и выполняют одну функцию как единое целое. Биологическая система - это совокупность упорядоченных, взаимодействующих и взаимозависимых живых структурных элементов. Они образуют единое целое как система ступеней, вытекающих одна из другой и выполняющих совместную функцию.

Фундамент и надстройка жизни

Способность всего живого из хаотичного теплового движения атомов и молекул создать порядок - это самая удивительная и глубокая особенность жизни. Фундаментальными свойствами жизни в биологии считают: способность живого к саморегуляции, самовоспроизведение и самообновление. К надстройке или необходимым атрибутам жизни относятся обмен веществ в организме и с окружающей средой (питание, выделение и дыхание), движение, раздражимость по принципу обратной связи, возможности адаптации, рост и развитие в процессе онтогенеза.

Основные свойства биосистемы

К основным свойствам относятся:

  • Единство функционала (биохимического, физиологического).
  • Целостность (сумма элементов не равна свойствам системы).
  • Ступенчатость (система состоит из подсистем).
  • Адаптация (способность к изменениям по принципу обратной связи).
  • Динамическая устойчивость.
  • Способность развиваться и самовоспроизводиться.

Уровни организации

Живая материя образует гомогенные системы со своим типом взаимодействий элементов, пространственным и временным масштабом процессов. Эти гомогенные биосистемы занимают свое место в системе живой материи. Основных уровней биосистем восемь:

  • молекулярный;
  • клеточный;
  • тканевый;
  • органный;
  • онтогенетический или организменный;
  • популяционный и видовой;
  • экосистемный или биогеоценотический;
  • биосферный.

Единство жизни

Все уровни перетекают один в другой, включаются друг в друга, переплетаются в единство всего живого на планете. Они символизируют многообразие жизненных форм и представляют собой единицы материи со своей спецификой процессов и проявлений. Жизнь возникла, существует и меняется в целостных биосистемах. Что такое биосистемы - это открытые системы, способные к росту и развитию, динамически устойчивые и самовоспроизводящиеся. Тогда как системы неживые - закрыты, статичны и склонны к деградации.

Изучение организации биосистем

Описание организации таких систем включает выделение подсистем или компонентов биосистемы. Далее исследуют все аспекты существования биосистем, а именно:

  • Структура. Анализ организации структуры проводится с помощью метода классифицирования - многоступенчатого и последовательного разделения совокупности для получения знаний о составе, связях и устройстве системы.
  • Функционал. Изучение функциональной структуры подразумевает определение функции, которую каждый компонент системы выполняет во всем процессе.
  • Основные свойства биосистем. Это показатель сущности системы в отношениях с другими, их закономерные взаимосвязи.

По такой схеме опишем самые главные примеры биосистем.

Клетка - элементарный пример биосистемы

Структурной составляющей данной биосистемы является мембранный аппарат, цитоплазма, органеллы и нуклеотид (ядро). Базовый уровень - молекулярный. Функциональная составляющая данной системы - это согласованная работа всех структур. Основные свойства будут определяться структурно-функциональной спецификой цитоплазматической мембраны, цитоплазмы, органелл и ядра.

Организм как биосистема

На этом уровне на первое место выходят системы регуляции и приспособительные способности, как механизм сохранения целостности и упорядоченности в условиях изменяющихся условий жизни. Структурная организация различна (от безъядерных, одноклеточных до многоклеточных) и наиболее разнообразна. Базовый уровень - клетка. Функциональные особенности: дифференциация клеток, тканей, органов подразумевает более сложные уровни структурного состава; взаимозависимость дифференцированных элементов друг от друга; интеграция и внутренние связи подсистем. Основными свойствами на этом уровне будет общее усложнение и разнообразие свойств живой материи. Например, свойство материи к воспроизводству себе подобных на этом уровне представлено бесполым, половым и вегетативным способом размножения.

Популяционно-видовой уровень

Что такое биосистема на данном уровне - это единица эволюционного процесса, как движущей силы появления всего многообразия жизни на Земле. Именно в ключе эволюционного учения этот уровень становится основополагающим. Вид, как совокупность организмов, обладающая внешним и внутренним сходством, свободно скрещивающихся между собой (для панмиктичных видов) и дающих фертильное потомство, обитающих на определенной территории довольно длительный период времени и имеющих общих филогенетических предков - вот структурная единица данного уровня. Функциональная составляющая: индивидуальный приспособительный потенциал особи, внутривидовая конкуренция и естественный отбор. Вид - закрытая система в генетическом аспекте. Ведь именно порог не скрещиваемости с представителями других видов дает организмам видовую специфичность.

Биосфера - глобальная экосистема

Другой пример того, что такое биосистема, - биосфера, как система наивысшего порядка. Структурный компонент - биотический (живые организмы и продукты их жизнедеятельности) и абиотический (химические компоненты и физические условия). Элементарная единица структуры - биогеоценоз. Функциональный аспект - круговорот веществ в природе, наличие биохимических циклов, для которых характерны открытость и замкнутость. Главные функции биотического компонента - окислительно-восстановительная, концентрационная и газовая. Основные свойства - свойства

Глава 3

Закономерности жизни на организменном уровне

Изучив эту главу, вы сможете характеризовать:

Организм как открытую биосистему;

Процессы размножения и индивидуального развития организмов;

Особенности организмов разных царств живой природы;

Закономерности наследования признаков;

Закономерности изменчивости у организмов.

Вы сумеете:

Объяснять особенности строения и жизнедеятельности вирусов;

Доказывать единство живой природы;

Сравнивать деление клетки при митозе и мейозе;

Объяснять роль гена в наследовании признаков;

Доказывать роль изменчивости в проявлении признаков у организмов.

Организм - открытая живая система (биосистема)

Вспомните

Почему клетку называют биосистемой;

Что организмы бывают одноклеточными и многоклеточными.

Организм - живое существо. Любой организм - это отдельное живое существо (особь), реализующее жизнь на нашей планете. Поэтому организмы называют элементарными структурными единицами жизни.

Все живые организмы независимо от их формы и размеров (от нескольких микрон у некоторых бактерий до десятков метров у растений) служат носителями жизни, обладают основными свойствами живого. Они способны питаться, дышать, осуществлять обмен веществ, удалять ненужные вещества, расти, развиваться, размножаться, взаимодействовать с окружающей средой и приспосабливаться к её изменениям. При этом все живые организмы обладают сходными потребностями - в пище как источнике веществ и энергии и в комплексе условий среды как определённом жизненном пространстве с пищевыми ресурсами, используемом для укрытия, размножения и расселения по земной поверхности.

Свойства организма присущи всем представителям организменного уровня жизни.

Все процессы жизнедеятельности организма осуществляются благодаря функционированию соответствующих органов. Отделить работу одного органа от другого невозможно, так как все они тесно связаны между собой, работают согласованно, дополняя друг друга. Органы многоклеточного организма, как и органоиды одноклеточного, - это не просто сумма каких-то случайных частей тела, а специализированные компоненты, выполняющие разные, но необходимые функции, благодаря которым организм проявляется как целостность, совокупность взаимодействующих органов, обеспечивающих его жизнедеятельность. Взаимосвязанная работа органов обусловливает свойства организма как особой элементарной единицы жизни.

Каждый организм представляет собой совокупность взаимодействующих органов, тесно связанных между собой.

Важным признаком любого организма (даже неклеточного - вируса) служит строгая взаимозависимость всех его отдельных частей (органов, тканей, клеток). Нарушение работы одного из органов может привести к нарушению деятельности остальных. Например, если корни не будут обеспечивать поглощение из почвы воды с растворёнными в ней минеральными солями, то всё растение вскоре погибнет. Животное, если у него не будут работать пищеварительные органы, или органы дыхания, или другие органы, погибнет.

Взаимосвязанная работа органов обеспечивает целостность организма, функционирующего как живая система - биосистема.

Биосистема «организм» представляет собой систему открытого типа, поскольку из внешней среды организм потребляет необходимые ему вещества и энергию, а в среду удаляет ненужные продукты обмена веществ.

Следует отметить способность биосистем к самоподдержанию (самосохранению), т. е. способность сохранять своё существование в течение какого-то определённого срока, свойственного данному виду организмов. Так, слон, лев в благоприятных условиях могут прожить 50-60 лет, ель и сосна - 400-500 лет, овёс, лён и подсолнечник - не более 5~6 месяцев. Многие бактерии живут 20-40 минут, а дрожжи и того меньше.

Одной из причин более длительного периода жизни многоклеточных организмов является постоянная замена клеток, отживших свой срок, в их тканях и органах. Так клетки печени человека обновляются примерно каждые 18 месяцев, эритроциты живут около четырёх месяцев, а клетки эпителия тонкого кишечника и клетки полости рта существуют один - три дня. Есть и такие клетки, которые живут с момента появления в эмбрионе многоклеточного организма до конца его жизни, - нейроны, в которых постоянно происходит обновление внутриклеточного состава.

Регуляция физиологических процессов. Важным свойством биосистем служит саморегуляция их физиологических процессов. У одноклеточных организмов процессы жизнедеятельности регулируются посредством обмена химическими веществами между внешней и внутренней средой. У многоклеточных организмов выработался особый механизм, обеспечивающий согласованное протекание процессов их жизнедеятельности, - гуморальная регуляция.

У животных она осуществляется при участии биологически активных веществ - ионов, продуктов обмена веществ, гормонов, которые выделяются клетками и тканями в жидкие среды организма - кровь, лимфу, тканевую жидкость.

Регуляцию жизнедеятельности растительного организма, помимо продуктов обмена веществ, осуществляют фитогормоны - биологически активные соединения, являющиеся необходимым звеном для запуска и регуляции физиологических процессов.

В ходе эволюции животного мира гуморальная регуляция процессов жизнедеятельности организмов постепенно дополнялась более совершенными механизмами нервной регуляции. У высокоразвитых животных и человека гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции.

Регуляция процессов жизнедеятельности осуществляет в организме согласованное взаимодействие всех его органов, тканей и клеток.

Способность биосистемы «организм» к саморегулированию обеспечивает гомеостаз (греч. homoios - «одинаковый» и stasis - «состояние») организма, т. е. постоянство состава и свойств его внутренней среды (межклеточной жидкости, лимфы, крови). Гомеостаз обусловливает возможность организма противостоять изменениям процессов своей жизнедеятельности под воздействием факторов внешней среды.

1. Почему живые организмы относят к открытым биосистемам?

2. В чём отличие биосистемы «организм» от биосистемы «клетка»?

3. Охарактеризуйте регуляцию физиологических процессов у организма.

4. Что служит главным признаком биосистемы «организм»?