Физические и химические свойства гелия. Гелий технический — применение в науке и промышленности. Чистота и объемы производства

Химический элемент гелий сначала был обнаружен на Солнце и лишь потом — на Земле.

Ключевую роль в истории открытия гелия сыграл Норман Локьер, основатель одного из передовых мировых научных изданий — журнала Nature . В процессе подготовки к выпуску журнала он познакомился с лондонским научным истеблишментом и увлекся астрономией. Это было время, когда, вдохновленные открытием Кирхгофа—Бунзена , астрономы только начинали изучать спектр света, испускаемого звездами. Локьеру самому удалось сделать ряд важных открытий — в частности, он первым показал, что солнечные пятна холоднее остальной солнечной поверхности, а также первый указал на наличие у Солнца внешней оболочки, назвав ее хромосферой . В 1868 году, исследуя свет, излучаемый атомами в протуберанцах — огромных выбросах плазмы с поверхности Солнца, — Локьер заметил ряд прежде неизвестных спектральных линий (см. Спектроскопия). Попытки получить такие же линии в лабораторных условиях окончились неудачей, из чего Локьер сделал вывод, что он обнаружил новый химический элемент. Локьер назвал его гелием, от греческого helios — «Солнце».

Ученые недоумевали, как им отнестись к появлению гелия. Одни предполагали, что при интерпретации спектров протуберанцев была допущена ошибка, однако эта точка зрения получала все меньше сторонников, поскольку все большему количеству астрономов удавалось наблюдать линии Локьера. Другие утверждали, что на Солнце есть элементы, которых нет на Земле — что, как уже говорилось, противоречит главному положению о законах природы. Третьи (их было меньшинство) считали, что когда-нибудь гелий будет найден и на Земле.

В конце 1890-х годов лорд Рэлей и сэр Уильям Рамзай провели серию опытов, приведших к открытию аргона . Рамзай переделал свою установку, чтобы с ее помощью исследовать газы, выделяемые урансодержащими минералами. В спектре этих газов Рамзай обнаружил неизвестные линии и послал образцы нескольким коллегам для анализа. Получив образец, Локьер сразу же узнал линии, которые более четверти века назад он наблюдал в солнечном свете. Загадка гелия была решена: газ, несомненно, находится на Солнце, но он существует также и здесь, на Земле. В наше время этот газ больше всего известен в обычной жизни как газ для надувания дирижаблей и воздушных шаров (см. Закон Грэма), а в науке — благодаря его применению в криогенике , технологии достижения сверхнизких температур.

Короний и небулий

Вопрос о том, есть ли где-нибудь во Вселенной химические элементы, которых нет на Земле, не потерял свою актуальность и в XX веке. При исследовании внешней солнечной атмосферы — солнечной короны , состоящей из горячей сильно разреженной плазмы, — астрономы обнаружили спектральные линии, которые им не удалось отождествить ни с одним из известных земных элементов. Ученые предположили, что эти линии принадлежат новому элементу, который получил название короний . А при изучении спектров некоторых туманностей — далеких скоплений газов и пыли в Галактике — были обнаружены еще одни загадочные линии. Их приписали другому «новому» элементу — небулию . В 1930-е годы американский астрофизик Айра Спрейг Боуэн (Ira Sprague Bowen, 1898-1973) пришел к выводу, что линии небулия на самом деле принадлежат кислороду, но приобрели такой вид из-за экстремальных условий, существующих на Солнце и в туманностях, причем условия эти не могут быть воспроизведены в земных лабораториях. Короний же оказался сильно ионизированным железом. А эти линии получили название запрещенные линии .

Джозеф Норман ЛОКЬЕР
Joseph Norman Lockyer, 1836-1920

Английский ученый. Родился в городе Рагби в семье военного врача. Локьер пришел в науку необычным путем, начав свою карьеру чиновником в военном министерстве. Чтобы подработать, он, воспользовавшись общественным интересом к науке, стал издавать научно-популярный журнал. В 1869 году вышел первый номер журнала Nature , и в течение 50 лет Локьер оставался его редактором. Он участвовал во многих экспедициях, наблюдающих за полными солнечными затмениями. Одна из таких экспедиций и привела его к открытию гелия. Локьер также известен как основатель археоастрономии — науки, изучающей астрономический смысл древних сооружений, таких как Стоунхендж, — и автор многих научно-популярных книг.

Гелий

ГЕ́ЛИЙ -я; м. [от греч. hēlios - солнце]. Химический элемент (He), не имеющий запаха химически инертный газ, самый лёгкий после водорода.

Ге́лиевый, -ая, -ое. Г-ое ядро.

Ге́лий

(лат. Helium), химический элемент VIII группы периодической системы, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при -268,93ºC); единственное вещество, которое не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. Жидкий гелий - квантовая жидкость, обладающая сверхтекучестью ниже 2,17ºК (-270,98ºC). В небольшом количестве гелий содержится в воздухе и земной коре, где он постоянно образуется при распаде урана и других α-радиоактивных элементов (α-частицы - это ядра атомов гелия). Значительно более распространён гелий во Вселенной, например на Солнце, где он впервые был открыт (отсюда название: от греч. hēlios - Солнце). Получают гелий из природных газов. Применяют в криогенной технике, для создания инертных сред, в аэронавтике (для заполнения стратостатов, воздушных шаров и др.).

ГЕЛИЙ

ГЕ́ЛИЙ (лат. Helium), He (читается «гелий»), химический элемент с атомным номером 2, атомная масса 4,002602. Относится к группе инертных, или благородных, газов (группа VIIIA периодической системы), находится в 1-м периоде.
Природный гелий состоит из двух стабильных нуклидов: 3 Не (0,00013% по объему) и 4 Не. Почти полное преобладание гелия-4 связано с образованием ядер этого нуклида при -радиоактивном распаде урана, тория, радия и других атомов, происходившем в течение длительной истории Земли.
Радиус нейтрального атома гелия 0,122 нм. Электронная конфигурация нейтрального невозбужденного атома 1s 2 . Энергии последовательной ионизации нейтрального атома равны, соответственно, 24,587 и 54,416 эВ (у атома гелия самая высокая среди нейтральных атомов всех элементов энергия отрыва первого электрона).
Простое вещество гелий - легкий одноатомный газ без цвета, вкуса, запаха.
История открытия
Открытие гелия началось с 1868, когда при наблюдении солнечного затмения астрономы француз П. Ж. Жансен (см. ЖАНСЕН Пьер Жюль Сезар) и англичанин Д. Н. Локьер (см. ЛОКЬЕР Джозеф Норман) независимо друг от друга обнаружили в спектре солнечной короны (см. СОЛНЕЧНАЯ КОРОНА) желтую линию (она получила название D 3 -линии), которую нельзя было приписать ни одному из известных в то время элементов. В 1871 Локьер объяснил ее происхождение присутствием на Солнце нового элемента. В 1895 англичанин У. Рамзай (см. РАМЗАЙ Уильям) выделил из природной радиоактивной руды клевеита газ, в спектре которого присутствовала та же D 3 -линия. Новому элементу Локьер дал имя, отражающее историю его открытия (греч. Helios-солнце). Поскольку Локьер полагал, что обнаруженный элемент - металл, он использовал в латинском названии элемента окончание «lim» (соответствует русскому окончанию «ий»), которое обычно употребляется в названии металлов. Таким образом, гелий задолго до своего открытия на Земле получил имя, которое окончанием отличает его от названий остальных инертных газов.
Нахождение в природе
В атмосферном воздухе содержание гелия очень мало и составляет около 5,27·10 -4 % по объему. В земной коре его 0,8·10 -6 %, в морской воде - 4·10 -10 %. Источником гелия служат нефти и гелионосные природные газы, в которых содержание гелия достигает 2-3%, а в редких случаях и 8-10% по объему. Зато в космосе гелий - второй по распространенности элемент (после водорода): на его долю приходится 23% космической массы.
Получение
Технология получения гелия очень сложна: его выделяют из природных гелионосных газов, пользуясь методом глубокого охлаждения. Месторождения таких газов имеются в России, США, Канаде и ЮАР. Гелий содержится также в некоторых минералах (монаците, торианите и других), при этом из 1 кг минерала при нагревании можно выделить до 10 л гелия.
Физические свойства
Гелий - легкий негорючий газ, плотность газообразного гелия при нормальных условиях 0,178 кг/м 3 (меньше только у газа водорода). Температура кипения гелия (при нормальном давлении) около 4,2К (или –268,93 °C, это - самая низкая температура кипения).
При нормальном давлении жидкий гелий не удается превратить в твердое вещество даже при температурах, близких к абсолютному нулю (0К). При давлении около 3,76 МПа температура плавления гелия 2,0К. Наименьшее давление, при котором наблюдается переход жидкого гелия в твердое состояние - 2,5МПа (25 ат), температура плавления гелия при этом около 1,1 К (–272,1 °C).
В 100 мл воды при 20 °C растворяется 0,86 мл гелия, в органических растворителях его растворимость еще меньше. Легкие молекулы гелия хорошо проходят (диффундируют) через различные материалы (пластмассы, стекло, некоторые металлы).
Для жидкого гелия-4, охлажденного ниже –270,97 °C, наблюдается ряд необычных эффектов, что дает основание рассматривать эту жидкость как особую, так называемую квантовую, жидкость. Эту жидкость обычно обозначают как гелий-II в отличие от жидкого гелия-I - жидкости, существующей при чуть более высоких температурах. График изменения теплоемкости жидкого гелия с изменением температуры напоминает греческую букву лямбда (l). Температура перехода гелия-I в гелий-II 2,186 К. Эту температуру часто называют l-точкой.
Жидкий гелий-II способен быстро проникать через мельчайшие отверстия и капилляры, не обнаруживая при этом вязкости (так называемая сверхтекучесть (см. СВЕРХТЕКУЧЕСТЬ) жидкого гелия-II). Кроме того, пленки гелия-II быстро перемещаются по поверхности твердых тел, в результате чего жидкость быстро покидает тот сосуд, в который она была помещена. Это свойство гелия-II называют сверхползучестью. Сверхтекучесть гелия-II открыта в 1938 советским физиком П. Л. Капицей (см. КАПИЦА Петр Леонидович) (Нобелевская премия по физике, 1978). Объяснение уникальным свойствам гелия-II дано другим советским физиком Л. Д. Ландау (см. ЛАНДАУ Лев Давидович) в 1941-1944 (Нобелевская премия по физике, 1962).
Никаких химических соединений гелий не образует. Правда, в разреженном ионизированном гелии удается обнаружить достаточно устойчивые двухатомные ионы Не 2 + .
Применение
Гелий используют для создания инертной и защитной атмосферы при сварке, резке и плавке металлов, при перекачивании ракетного топлива, для заполнения дирижаблей и аэростатов, как компонент среды гелиевых лазеров. Жидкий гелий, самая холодная жидкость на Земле, - уникальный хладагент в экспериментальной физике, позволяющий использовать сверхнизкие температуры в научных исследованиях (например, при изучении электрической сверхпроводимости (см. СВЕРХПРОВОДИМОСТЬ) ). Благодаря тому, что гелий очень плохо растворим в крови, его используют как составную часть искусственного воздуха, подаваемого для дыхания водолазам. Замена азота на гелий предотвращает кессонную болезнь (см. КЕССОННАЯ БОЛЕЗНЬ) (при вдыхании обычного воздуха азот под повышенным давлением растворяется в крови, а затем выделяется из нее в виде пузырьков, закупоривающих мелкие сосуды).


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "Гелий" в других словарях:

    - (лат. Helium) Не, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602, относится к благородным газам; без цвета и запаха, плотность 0,178 г/л. Сжижается труднее всех известных газов (при 268,93 .С);… … Большой Энциклопедический словарь

    - (греч., от helyos солнце). Элементарное тело, открытое в солнечном спектре и имеющееся на земле в некоторых редких минералах; в ничтожном количестве входит в состав воздуха. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н … Словарь иностранных слов русского языка

    - (символ Не), газообразный неметаллический элемент, БЛАГОРОДНЫЙ ГАЗ, открытый в 1868 г. Впервые получили из минерала клевита (разновидности уранита) в 1895 г. В настоящее время основным источником его является природный газ. Содержится также в… … Научно-технический энциклопедический словарь

    Я, муж. , стар. Елий, я.Отч.: Гелиевич, Гелиевна.Производные: Геля (Гела); Еля.Происхождение: (От греч. hēlios солнце.)Именины: 27 июля Словарь личных имён. Гелий См. Эллий. День Ангела. Справоч … Словарь личных имен

    ГЕЛИЙ - хим. элемент, символ Не (лат. Helium), ат. н. 2, ат. м. 4,002, относится к инертным (благородным) газам; без цвета и запаха, плотность 0,178 кг/м3. В обычных условиях Г. одноатомный газ, атом которого состоит из ядра и двух электронов; образуется … Большая политехническая энциклопедия

    - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93шC), единственное не отвердевающее при нормальном давлении;… … Современная энциклопедия

    Хим. элемент восьмой гр. периодической системы, порядковый номер 2; инертный газ с ат. в. 4,003. Состоит из двух стабильных изотопов Не4 и Не3. Содер. их непостоянно и зависит от источника образования, но тяжелый изотоп всегда преобладает. В… … Геологическая энциклопедия

    Гелий - (Helium), He, химический элемент VIII группы периодической системы, атомный номер 2, атомная масса 4,002602; относится к благородным газам; самое низкокипящее вещество (tкип 268,93°C), единственное не отвердевающее при нормальном давлении;… … Иллюстрированный энциклопедический словарь

    Солнечный Словарь русских синонимов. гелий сущ., кол во синонимов: 4 газ (55) имя (1104) … Словарь синонимов

    ГЕЛИЙ, я, муж. Химический элемент, инертный газ без цвета и запаха, самый лёгкий газ после водорода. | прил. гелиевый, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

    - (Helium) газ без цвета и запаха, химически недеятельный, в 7,2 раза легче воздуха, не горит. В очень малом количестве находится в атмосфере (1/2000 %). Вследствие своей легкости и негорючести применяется главным образом для наполнения дирижаблей … Морской словарь

Книги

  • Конь белый , Гелий Рябов , 384 стр. Гелий Рябов знаком читателям по телевизионным сериалам Рожденная революцией, Государственная граница, фильмам Один из нас, Кража, Фаворит и др. Его перу принадлежат книги Повесть об… Категория:

ОПРЕДЕЛЕНИЕ

Гелий - второй элемент Периодической таблицы. Обозначение - Hе от латинского «helium». Расположен в первом периоде, VIIIА группе. Относится к группе инертных (благородных) газов. Заряд ядра равен 2.

Гелий встречается на Земле в основном в атмосфере, однако некоторые его количества выделяются в определенных местах из недр Земли вместе с природными газами. Воды многих минеральных источников тоже выделяют гелий.

Гелий представляет собой бесцветный, трудносжижаемый газ (температура кипения -268,9 o С), затвердевающий только под избыточным давлением (схема строения атома представлена на рис. 1). Обладает сильной способностью проникать через стекло и металлическую фольгу. Плохо растворяется в воде, лучше - в бензоле, этаноле, толуоле.

Рис. 1. Строение атома гелия.

Атомная и молекулярная масса гелия

ОПРЕДЕЛЕНИЕ

Относительная молекулярная масса M r - это молярная масса молекулы, отнесенная к 1/12 молярной массы атома углерода-12 (12 С). Это безразмерная величина.

ОПРЕДЕЛЕНИЕ

Относительная атомная масса A r - это молярная масса атома вещества, отнесенная к 1/12 молярной массы атома углерода-12 (12 С).

Поскольку в свободном состоянии гелий существует в виде одноатомных молекул He, значения его атомной и молекулярной масс совпадают. Они равны 4,003.

Изотопы гелия

Гелий - наиболее распространенный после водорода элемент космоса - состоит из двух стабильных изотопов: 4 He и 3 He. Их массовые числа равны 4 и 3. Ядро атома гелия 4 He содержит два протона и два нейтрона, а атома 3 He - такое же число протонов и один нейтрон.

Спектральный анализ показывает присутствие его в атмосфере Солнца, звезд, в метеоритах. Накапливание ядер 4 He во Вселенной обусловлено термоядерной реакцией, служащей источником солнечной и звездной энергии.

Ионы гелия

В обычных условиях гелий химически инертен, но при сильном возбуждении атомов он может образовывать молекулярные ионы He 2 + . В обычных условиях эти ионы неустойчивы; захватывая недостающий электрон, они распадаются на два нейтральных атома.

Молекула и атом гелия

В свободном состоянии гелий существует в виде одноатомных молекул He.

Примеры решения задач

ПРИМЕР 1

Задание Углеводород содержит 92,3 % углерода (с). Выведите молекулярную (эмпирическую) формулу углеводорода (С х Н у), если плотность его паров по гелию (Не) равна 6,5.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов углерода в молекуле через «х», число атомов водорода через «у». Найдем процентное содержание водорода в составе углеводорода:

ω (Н) = 100% — ω (С) =100% — 92,3% = 7,7%.

Найдем соответствующие относительные атомные массы элементов углерода и водорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(С) = 12 а.е.м.; Ar(Н) = 1 а.е.м.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y = m(Сa)/Ar(С) : m(Н)/Ar(Р);

x:y = 92,3/12: 7,7/1;

x:y:z = 7,7: 7,7 = 1: 1.

Значит простейшая формула углеводорода СН.

M(CH) = Ar(C) + Ar(H) = 12 + 1 =13 / моль.

Значение молярной массы органического вещества можно определить при помощи его плотности по гелию:

M substance = M(Не) × D(Не) ;

M substance = 4 × 6,5 = 26 г/моль.

Чтобы найти истинную формулу углеводорода найдем отношение полученных молярных масс:

M substance / M(CH) = 26 / 13 = 2.

Значит индексы атомов углерода и водорода должны быть в 2 раза выше, т.е. молекулярная (эмпирическая) формула углеводорода имеет вид C 2 H 2 .Это ацетилен.

Ответ C 2 H 2 .Это ацетилен.

ПРИМЕР 2

Задание В баллоне вместимостью 60 л при 20 o С и 40 атм находится гелий. Определите объем израсходованного гелия при н.у., если после 8 часов работы давление в баллоне понизилось до 32 атм, а температура возросла до 22 o С.
Решение Сначала переведем градусы в Кельвины:

T 1 = 273 + 20 = 293 К;

T 2 = 273 + 22 = 295 К.

По объединенному газовому закону:

PV / T = P 0 V 0 / T 0 ;

V 0 = PVT 0 / P 0 T.

Для исходного состояния гелия в баллоне приведенный объем составил:

V 0 initial = P 1 ×V 1 ×T 0 / P 0 ×T 1 .

Для конечного состояния гелия в баллоне приведенный объем составил:

V 0 final = P 2 ×V 2 ×T 0 / P 0 ×T 2 .

Выразим объем израсходованного гелия при н.у.:

V x = V 0 initial — V 0 final ;

V x = - ;

V x = (T 0 / P 0) × [(P 1 ×V 1 / T 1) - (P 2 ×V 2 / T 2)].

Так как вместимость баллона постоянна, то V 1 = V 2 = V, тогда:

V x = (T 0 ×V / P 0) × [(P 1 / T 1) - (P 2 / T 2)];

V x = (273× 60 / 1) × [(40 / 293) - (32 / 295)] = 459 л.

Ответ 459 л.

ГЕЛИЙ, He (лат. Helium, от греч. helios — Солнце, т. к. впервые был обнаружен в солнечном спектре * а. helium; н. Helium; ф. helium; и. helio), — элемент VIII группы периодической системы Менделеева, относится к инертным газам, атомный номер 2, атомная масса 4,0026. Природный гелий состоит из двух стабильных изотопов 3 He и 4 He. Открыт в 1868 французким астрономом Ж. Жансеном и английским астрономом Дж. Н. Локьером при спектроскопическом исследовании солнечных протуберанцев. На гелий впервые выделен в 1895 английским физиком У. Рамзаем из радиоактивного минерала клевеита.

Свойства гелия

При нормальных условиях гелий — газ без цвета и запаха. 0,178 кг/м 3 , t кипения — 268,93° С. Гелий - единственный элемент, который в жидком состоянии не отвердевает при нормальном давлении, как бы глубоко его ни охлаждали. В 1938 советский физик П. Л. Капица открыл у 4 He сверхтекучесть — способность течь без вязкости. Наименьшее давление, необходимое для перевода жидкого гелия в твёрдый, 2,5 МПа, при этом t плавления — 272,1°С. (при 0°С) 2,1.10 -2 Вт/м.К. Молекула гелия состоит из одного атома, её радиус от 0,085 (нетинный) до 0,133 нм (Ван-дер-Ваальсов) (0,85-1,33 Е), В 1 литре воды при 20°С растворяется около 8,8 мл гелия Устойчивые химические соединения гелия не получены.

Гелий в природе

По распространённости во Вселенной гелий занимает 2-е место после . На Земле гелия мало: в 1 м 3 воздуха содержится 5,24 см 3 гелия, среднее содержание в 3.10 -7 %. В пластовых литосферы существуют 3 генетические составляющие гелия — радиогенный, первозданный и атмосферный гелий. Радиогенный гелий образуется повсеместно при радиоактивных превращениях тяжёлых элементов и различных ядерных реакциях, первозданный — поступает в литосферу как из глубинных пород , окклюдировавших первозданный гелий и сохранивших его со времени формирования планеты, так и из космоса вместе с космической пылью, метеоритами и т.п. Атмосферный гелий попадает в осадки из воздуха, при процессах седиментогенеза, а также с инфильтрующимися поверхностными водами.

Величина отношения 3 He/ 4 He в радиогенном гелии составляет п.10 -8 , в гелии мантии (смеси первозданного и радиогенного) (3±1).10 -5 , в космическом гелии 10 -3 -10 -4 , в атмосферном воздухе 1,4.10 -6 . В земном гелии абсолютно преобладает изотоп 4 He. Основное количество 4 He образовалось при а-распаде естественных радиоактивных элементов (радиоизотопы , актиноурана и ). Незначительные источники образования 4 He и 3 He в литосфере — ядерные реакции (нейтронное расщепление лития и т.п.), распад трития и др. На древних стабильных участках земной коры преобладает радиогенный 4 He 3 He/ 4 He = = (2±1).10 -8 . Для тектонически нарушенной земной коры (зон рифтов, глубинных разломов, эруптивных аппаратов, с тектономагматической или сейсмической активностью и т.п.) характерно повышенное количество 3 He 3 He/ 4 He = n.10 -5 . Для остальных геологических структур отношение 3 He/ 4 He в пластовых газах и флюидах изменяется в пределах 10 -8 -10 -7 . Различие в величинах изотопно-гелиевых отношений 3 He/ 4 He в мантийном и коровом гелии является индикатором современной связи глубинных флюидов с мантией. В силу лёгкости, инертности и высокой проницаемости гелия большинство породообразующих его не удерживает, и гелий мигрирует по трещинно-поровым пространствам пород, растворяясь в заполняющих их флюидах, иногда далеко отрываясь от основных зон образования.

Гелий — обязательная примесь во всех газах, образующих самостоятельные скопления в земной коре или выходящих наружу в виде естественных газовых струй. Обычно гелий составляет ничтожную примесь к другим газам; в редких случаях его количество доходит до нескольких % (по объёму); максимальные концентрации гелия выявлены в подземных газовых скоплениях (8-10%), газах урановых (10-13%) и водорастворённых газах (18-20%).

Получение гелия

В промышленности гелий получают из гелийсодержащих газов методом глубокого охлаждения (до -190°С), незначительное количество — при работе воздухоразделительных установок. Основные газовые компоненты при этом конденсируются (вымораживаются), а оставшийся гелиевый концентрат очищается от водорода и . Разрабатываются также диффузные методы извлечения гелия.

Транспортировка и хранение гелия — в высокогерметизированных ёмкостях. Гелий 1-2-го сортов обычно перевозят в стальных баллонах разной ёмкости, чаще до 40 л, под давлением до 15 МПа. Хранилища гелия устраивают также в подземных соляных камерах, а гелий-сырец (около 60% He и 40% N 2) хранят в выработанных подземных газовых структурах. На дальние расстояния гелий поставляется в сжатом и жидком виде с помощью специально оборудованного транспорта, а также газопроводом (например, в США).

Использование гелия

Применение гелия основано на таких его уникальных свойствах, как полная инертность (сварка в атмосфере гелия, производство сверхчистых и полупроводниковых материалов, добавка в дыхательные смеси и пр.), высокая проницаемость (течеискатели в аппаратах высокого и низкого давлений). гелий — единственный из химических элементов, который позволяет получать сверхнизкие температуры, необходимые для всех типов сверхпроводящих систем и установок (криоэнергетика). Жидкий гелий — хладоагент при проведении научных исследований.

Гелий (He) – инертный газ, являющийся вторым элементом периодической системы элементов, а так же вторым элементом по легкости и распространенности во Вселенной. Он относится к простым веществам и при стандартных условиях (Standard temperature and pressure) представляет собой одноатомный газ.

Гелий не имеет вкуса, цвета, запаха и не содержит токсинов.

Среди всех простых веществ, гелий имеет наименьшую точку кипения (T = 4,216 K). При атмосферном давлении получить твердый гелий невозможно, даже при температурах, близких к абсолютному нулю – для перехода в твердую форму, гелию необходимо давление выше 25 атмосфер. Химических соединений гелия мало и все при стандартных условиях они нестабильны.
Встречающийся в природе гелий состоит из двух стабильных изотопов – He и 4He. Изотоп “He” встречается очень редко (изотопная распространённость 0,00014 %) при 99,99986 % у изотопа 4He. Помимо природных, известны так же 6 искусственных радиоактивных изотопов гелия.
Появлением практически всего, имеющегося во Вселенной, гелия послужил первичный нуклеосинтез, протекавший в первые минуты после Большого взрыва.
В настоящее время практически весь гелий образуется из водорода в результате термоядерного синтеза, происходящего в недрах звезд. На нашей планете гелий образуется в процессе альфа-распада тяжёлых элементов. Та часть, гелия, которой удается просочится сквозь Земную кору, выходит наружу в составе природного газа и может составлять до 7 % от его состава. Что бы выделить гелий из природного газа, используется фракционная перегонка – процесс низкотемпературного разделения элементов.

История открытия гелия

18 августа 1868 г. ожидалось полное солнечное затмение. Астрономы всего мира деятельно готовились к этому дню. Они надеялись разрешить тайну протуберанцев – светящихся выступов, видимых в момент полного солнечного затмения по краям солнечного диска. Одни астрономы полагали, что протуберанцы представляют собой высокие лунные горы, которые в момент полного солнечного затмения освещаются лучами Солнца; другие думали, что протуберанцы – это горы на самом Солнце; третьи видели в солнечных выступах огненные облака солнечной атмосферы. Большинство же считало, что протуберанцы – не более, чем оптический обман.

В 1851 г. во время солнечного затмения, наблюдавшегося в Европе, немецкий астроном Шмидт не только увидел солнечные выступы, но и успел разглядеть, что очертания их меняются с течением времени. На основании своих наблюдений Шмидт заключил, что протуберанцы являются раскаленными газовыми облаками, выбрасываемыми в солнечную атмосферу гигантскими извержениями. Однако и после наблюдений Шмидта многие астрономы по-прежнему считали огненные выступы обманом зрения.

Только после полного затмения 18 июля 1860 г., которое наблюдалось в Испании, когда многие астрономы увидели солнечные выступы собственными глазами, а итальянцу Секки и французу Делларю удалось не только зарисовать, но и сфотографировать их, ни у кого уже не было сомнений в существовании протуберанцев.

К 1860 г. был уже изобретен спектроскоп – прибор, дающий возможность путем наблюдений видимой части оптического спектра определять качественный состав тела, от которого получается наблюдаемый спектр. Однако в день солнечного затмения никто из астрономов не воспользовался спектроскопом, чтобы рассмотреть спектр протуберанцев. О спектроскопе вспомнили, когда затмение уже закончилось.

Вот почему, готовясь к солнечному затмению 1868 г., каждый астроном в список инструментов для наблюдения включил и спектроскоп. Не забыл этот прибор и Жюль Жансен, известный французский ученый, отправляясь для наблюдения протуберанцев в Индию, где условия для наблюдения солнечного затмения по вычислениям астрономов были наилучшими.

В момент, когда сверкающий диск Солнца был полностью закрыт Луной, Жюль Жансен, исследуя с помощью спектроскопа оранжево-красные языки пламени, вырывавшиеся с поверхности Солнца, увидел в спектре, кроме трех знакомых линий водорода: красной, зелено-голубой и синей, новую, незнакомую – ярко-желтую. Ни одно из веществ, известных химикам того времени, не имело такой линии в той части спектра, где ее обнаружил Жюль Жансен. Такое же открытие, но у себя дома, в Англии, сделал астроном Норман Локиер.

25 октября 1868 г. парижская Академия наук получила два письма. Одно, написанное на следующий день после солнечного затмения, пришло из Гунтура, маленького городка на восточном побережье Индии, от Жюля Жансена; другое письмо, от 20 октября 1868 г. было из Англии от Нормана Локиера.

Полученные письма были зачитаны на заседании профессоров парижской Академии наук. В них Жюль Жансен и Норман Локиер, независимо один от другого, сообщили об открытии одного и того же "солнечного вещества". Это новое вещество, найденное на поверхности Солнца с помощью спектроскопа, Локиер предлагал назвать гелием от греческого слова "солнце" – "гелиос".

Такое совпадение удивило ученое собрание профессоров Академий и в то же время свидетельствовало об объективном характере открытия нового химического вещества. В честь открытия вещества солнечных факелов (протуберанцев) была выбита медаль. На одной стороне этой медали выбиты портреты Жансена и Локиера, а на другой – изображение древнегреческого бога солнца Аполлона в колеснице, запряженной четверкой коней. Под колесницей красовалась надпись на французском языке: "Анализ солнечных выступов 18 августа 1868 г."

В 1895 г. лондонский химик Генри Майерс обратил внимание Вильяма Рамзая, известного английского физико-химика, на тогда уже забытую статью геолога Хильдебранда. В этой статье Хильдебранд утверждал, что некоторые редкие минералы при нагревании их в серной кислоте выделяют газ, не горящий и не поддерживающий горения. В числе таких редких минералов был клевеит, найденный в Норвегии Норденшельдом, знаменитым шведским исследователем полярных областей.

Рамзай решил исследовать природу газа, содержащегося в клевеите. Во всех химических магазинах Лондона помощникам Рамзая удалось купить всего только... один грамм клевеита, заплатив за него всего 3,5 шиллинга. Выделив из полученного количества клевеита несколько кубических сантиметров газа и очистив его от примесей, Рамзай исследовал его с помощью спектроскопа. Результат был неожиданным: выделенный из клевеита газ оказался... гелием!

Не доверяя своему открытию, Рамзай обратился к Вильяму Круксу, крупнейшему в то время в Лондоне специалисту спектрального анализа, с просьбой исследовать выделенный из клевеита газ.

Крукс исследовал газ. Результат исследования подтвердил открытие Рамзая. Так 23 марта 1895 г. на Земле было обнаружено вещество, 27 лет назад найденное на Солнце. В тот же день Рамзай опубликовал свое открытие, отправив одно сообщение в Лондонское Королевское общество, а другое – известному французскому химику академику Бертло. В письме к Бертло Рамзай просил сообщить о своем открытии ученому собранию профессоров парижской Академии.

Через 15 дней после Рамзая, независимо от него, шведский химик Ланглэ выделил гелий из клевеита и так же, как и Рамзай, сообщил о своем открытии гелия химику Бертло.

В третий раз гелий был открыт в воздухе, куда, по мысли Рамзая, он должен был поступать из редких минералов (клевеита и др.) при разрушении и химических превращениях на Земле.

В небольших количествах гелий был обнаружен и в воде некоторых минеральных источников. Так, например, он был найден Рамзаем в целебном источнике Котрэ в Пиренейских горах, английский физик Джон Вильям Рэлей нашел его в водах источников на известном курорте Бат, немецкий физик Кайзер открыл гелий в ключах, бьющих в горах Шварцвальда. Однако больше всего было обнаружено гелия в некоторых минералах. Он содержится в самарските, фергусоните, колумбите, монаците, ураните. В минерале торианите с острова Цейлон содержится особенно много гелия. Килограмм торианита при нагревании докрасна выделяет 10 л гелия.

Вскоре было установлено, что гелий встречается только в тех минералах, в составе которых находятся радиоактивные уран и торий. Альфа-лучи, испускаемые некоторыми радиоактивными элементами, представляют собой не что иное, как ядра атомов гелия.

Из истории...

Его необычные свойства позволяют широко использовать гелий для самых различных целей. Первая, абсолютно логичная, исходя из его легкости – использование в воздушных шарах и дирижаблях. Причем в отличие от водорода – он не взрывоопасен. Это свойство гелия использовалось немцами в Первую Мировую войну на боевых дирижаблях. Минусом использования является то, дирижабль наполненный гелием не взлетит так высоко как водородный.

Для бомбардировки крупных городов, главным образом, столиц Англии и Франции, немецкое командование в первую мировую войну использовало дирижабли (цеппелины). Для наполнения их употребляли водород. Поэтому борьба с ними была сравнительно простой: зажигательный снаряд, попадавший в оболочку дирижабля, поджигал водород, тот мгновенно вспыхивал и аппарат сгорал. Из 123 дирижаблей, построенных в Германии за время первой мировой войны, 40 сгорели от зажигательных снарядов. Но однажды генеральный штаб английской армии был удивлен сообщением особой важности. Прямые попадания зажигательных снарядов в немецкий цеппелин не дали результатов. Дирижабль не вспыхнул, а медленно истекая каким-то неизвестным газом, улетел обратно.

Военные специалисты недоумевали и, несмотря на экстренное и подробное обсуждение вопроса о невоспламеняемости цеппелина от зажигательных снарядов, не могли найти нужного объяснения. Загадку разгадал английский химик Ричард Трелфолл. В письме в адрес Британского адмиралтейства он писал: "...полагаю, что немцы изобрели какой-то способ добывать в большом количестве гелий, и на этот раз наполнили оболочку своего цеппелина не водородом, как обычно, а гелием..."

Убедительность доводов Трелфолла, однако, снижалась фактом отсутствия в Германии значительных источников гелия. Правда, гелий содержится а воздухе, но его там мало: в одном кубическом метре воздуха содержится всего только 5 кубических сантиметров гелия. Холодильная машина системы Линде, превращающая в жидкость несколько сот кубических метров воздуха в один час, могла дать за это время не более 3 л гелия.

3 литра гелия в час! А для наполнения цеппелина нужно 5÷6 тыс. куб. м. Для получения такого количества гелия одна машина Линде должна была работать без остановки около двухсот лет, двести таких машин дали бы нужное количество гелия в один год. Постройка 200 заводов по превращению воздуха в жидкость для получения гелия экономически весьма невыгодна, а практически бессмысленна.

Откуда же немецкие химики получали гелий?

Этот вопрос, как выяснилось позже, был решен сравнительно просто. Задолго до войны немецким пароходным компаниям, возившим товары в Индию и Бразилию, дано было указание грузить возвращающиеся пароходы не обычным балластом, а монацитовым песком, который содержит гелий. Так был создан запас "гелиевого сырья" – около 5 тыс. т монацитового песка, из которого и получался гелий для цеппелинов. Кроме того, гелий добывался из воды минерального источника Наугейм, дававшего до 70 куб. м гелия ежедневно.

Случай с несгораемым цеппелином явился толчком для новых поисков гелия. Гелий стали усиленно искать химики, физики, геологи. Он неожиданно приобрел огромную ценность. В 1916 г. 1 кубометр гелия стоил 200 000 рублей золотом, т. е. 200 рублей за литр. Если учесть, что литр гелия весит 0,18 г, то 1 г его стоил свыше 1000 рублей.

Гелий сделался объектом охоты коммерсантов, спекулянтов, биржевых дельцов. Гелий в значительных количествах был обнаружен в природных газах, выходящих из недр земли в Америке, в штате Канзас, где после вступлений Америки в воину, близ города Форт-Уорс был построен гелиевый завод. Но война закончилась, запасы гелия остались неиспользованными, стоимость гелия резко упала и составляла в конце 1918 г. около четырех рублей за кубический метр.

Добытый с таким трудом гелий был использован американцами только в 1923 г. для наполнения теперь уже мирного дирижабля "Шенандоа". Он был первым и единственным в мире воздушным грузопассажирским кораблем, наполненным гелием. Однако "жизнь" его оказалась непродолжительной. Через два года после своего рождение "Шенандоа" был уничтожен бурей. 55 тыс. куб. м, почти весь мировой запас гелия, собиравшийся в течение шести лет, бесследно рассеялся в атмосфере во время бури, длившейся всего 30 минут.

Применение гелия



Гелий в природе

В основном земной гелий образуется при радиоактивном распаде урана-238, урана-235, тория и нестабильных продуктов их распада. Несравнимо меньшие количества гелия дает медленный распад самария-147 и висмута. Все эти элементы порождают только тяжелый изотоп гелия – He 4 , чьи атомы можно рассматривать как останки альфа частиц, захороненные в оболочке из двух спаренных электронов – в электронном дублете. В ранние геологические периоды, вероятно, существовали и другие, уже исчезнувшие с лица Земли естественно радиоактивные ряды элементов, насыщавшие планету гелием. Одним из них был ныне искусственно воссозданный нептуниевый ряд.

По количеству гелия, замкнутого в горной породе или минерале, можно судить об их абсолютном возрасте. В основе этих измерений лежат законы радиоактивного распада: так, половина урана-238 за 4,52 млрд лет превращается в гелий и свинец.

Гелий в земной коре накапливается медленно. Одна тонна гранита, содержащая 2 г урана и 10 г тория, за миллион лет продуцирует всего 0,09 мг гелия – половину кубического сантиметра. В очень немногих богатых ураном и торием минералах содержание гелия довольно велико – несколько кубических сантиметров гелия на грамм. Однако доля этих минералов в естественном производстве гелия близка к нулю, так как они очень редки.

На Земле гелия мало: 1 м 3 воздуха содержит всего 5,24 см 3 гелия, а каждый килограмм земного материала - 0,003 мг гелия. Но по распространённости во Вселенной гелий занимает 2-е место после водорода: на долю гелия приходится около 23% космической массы. Примерно половина всего гелия сосредоточена в земной коре, главным образом в её гранитной оболочке, аккумулировавшей основные запасы радиоактивных элементов. Содержание гелия в земной коре невелико - 3 х 10 -7 % по массе. Гелий накапливается в свободных газовых скоплениях недр и в нефтях; такие месторождения достигают промышленных масштабов. Максимальные концентрации гелия (10 -13 %) выявлены в свободных газовых скоплениях и газах урановых рудников и (20-25%) в газах, спонтанно выделяющихся из подземных вод. Чем древнее возраст газоносных осадочных пород и чем выше в них содержание радиоактивных элементов, тем больше гелия в составе природных газов.

Добыча гелия

Добыча гелия в промышленных масштабах производится из природных и нефтяных газов как углеводородного, так и азотного состава. По качеству сырья гелиевые месторождения подразделяются: на богатые (содержание Не > 0,5% по объёму); рядовые (0,10-0,50) и бедные < 0,10). Значительные его концентрации известны в некоторых месторождениях природного газа Канады, США (шт. Канзас, Техас, Нью-Мексико, Юта).

Мировые запасы гелия составляют 45,6 млрд. кубометров. Крупные месторождения находятся в США (45% от мировых ресурсов), далее идут Россия (32%), Алжир (7%), Канада (7%) и Китай (4%).
По производству гелия также лидируют США (140 млн. кубометров в год), затем - Алжир (16 млн.).

Россия занимает третье место в мире – 6 млн. кубометров в год. Оренбургский гелиевый завод является в настоящее время единственным отечественным источником получения гелия, причем производство газа снижается. В связи с этим, газовые месторождения Восточной Сибири и Дальнего Востока с высокими концентрациями гелия (до 0,6%) приобретают особое значение. Одним из наиболее перспективных является Ковыктинское газоконденсатное месторождение, находящееся на севере Иркутской области. По оценкам специалистов здесь содержится около 25% общемировы х запасов гелия.

Наименование показателя

Гелий (марки А) (по ТУ 51-940-80)

Гелий (марки Б) (по ТУ 51-940-80)

Гелий высокой чистоты, марки 5.5 (по ТУ 0271-001-45905715-02)

Гелий высокой чистоты, марки 6.0 (по ТУ 0271-001-45905715-02)

Гелий, не менее

Азот, не более

Кислород + аргон

Неон, не более

Водяные пары, не более

Углеводороды, не более

СО2 + СО, не более

Водород, не более

Безопасность

– Гелий не токсичен, не горюч, не взрывоопасен
– Гелий разрешено применять в любых местах массового скопления людей: на концертах, рекламных акциях, стадионах, магазинах.
– Газообразный гелий физиологически инертен и не представляет опасности для человека.
– Гелий не опасен и для окружающей среды, поэтому обезвреживания, утилизации и ликвидации его остатков в баллонах не требуется.
– Гелий значительно легче воздуха и рассеивается в верхних слоях атмосферы Земли.

Гелий (марки А и Б по ТУ 51-940-80)

Техническое наименование

Гелий газообразный

Химическая формула

Номер по списку OON

Класс опасности при перевозках

Физические свойства

Физическое состояние

При нормальных условиях - газ

Плотность, кг/м³

При нормальных условиях (101,3 кПа, 20 С), 1627

Температура кипения, С при 101,3 кПа

Температура 3-ной точки и равновесное ей давление С, (мПа)

Растворимость в воде

незначительная

Пожаро- и взрывоопасность

пожаро-взрывобезопасен

Стабильность и химическая активность

Стабильность

Стабилен

Реакционная способность

Инертный газ

Опасность для человека

Токсическое воздействие

Не токсичен

Экологическая опасность

Вредного влияния на окружающую среду не оказывает

Средства

Применимы любые средства

Хранение и перевозка гелия

Газообразный гелий можно транспортировать всеми видами транспорта согласно правилам перевозок грузов на конкретном виде транспорта. Перевозка производится в специальных стальных баллонах коричневого цвета и контейнерах для перевозки гелия. Жидкий гелий транспортируют в транспортных сосудах типа СТГ-40, СТГ-10 и СТГ-25 объемом 40, 10 и 25 литров.

Правила перевозки баллонов с техническими газами

Перевозка опасных грузов в Российской Федерации регламентируется следующими документами:

1. "Правила перевозки опасных грузов автомобильным транспортом" (в ред. Приказов Минтранса РФ от 11.06.1999 №37, от 14.10.1999 №77; зарегистрированы в Министерстве юстиции Российской Федерации 18 декабря 1995 года, регистрационный N 997).

2. "Европейское соглашение о международной дорожной перевозке опасных грузов" (ДОПОГ), к которому Россия официально присоединилась 28 апреля 1994 (постановление Правительства РФ от 03.02.1994 №76).

3. "Правила дорожного движения" (ПДД 2006), а именно статья 23.5, устанавливающая что "Перевозка... опасных грузов... осуществляется в соответствии со специальными правилами".

4. "Кодекс РФ об административных правонарушениях", статья 12.21 ч.2 которого предусматривает ответственность за нарушение правил перевозки опасных грузов в виде "административного штрафа на водителей в размере от одного до трех минимальных размеров оплаты труда или лишения права управления транспортными средствами на срок от одного до трех месяцев; на должностных лиц, ответственных за перевозку - от десяти до двадцати минимальных размеров оплаты труда".

В соответствии с п.п.3 п.1.2 "Действие Правил не распространяется на... перевозки ограниченного количества опасных веществ на одном транспортном средстве, перевозку которых можно считать как перевозку неопасного груза". Там же разъяснено, что "Ограниченное количество опасных грузов определяется в требованиях по безопасной перевозке конкретного вида опасного груза. При его определении возможно использование требований Европейского соглашения о международной перевозке опасных грузов (ДОПОГ)". Таким образом, вопрос о максимальном количестве веществ, которое можно перевозить как неопасный груз сводится к изучению раздела 1.1.3 ДОПОГ , устанавливающему изъятия из европейских правил перевозки опасных грузов, связанные с различными обстоятельствами.

Так, например, в соответствии с п. 1.1.3.1 "Положения ДОПОГ не применяются... к перевозке опасных грузов частными лицами, когда эти грузы упакованы для розничной продажи и предназначены для их личного потребления, использования в быту, досуга или спорта, при условии, что приняты меры для предотвращения любой утечки содержимого в обычных условиях перевозки".

Однако, формально признаваемая правилами перевозки опасных грузов группа изъятий - изъятия связанные с количествами, перевозимыми в одной транспортной единице (п.1.1.3.6 ).

Все газы отнесены ко второму классу веществ по классификации ДОПОГ. Негорючие, неядовитые газы (группы А - нейтральные и О - окисляющие) относятся к третьей транспортной категории, с ограничением максимального количества в 1000 единиц. Легковоспламеняющиеся (группа F) - ко второй, с ограничением максимального количества в 333 единицы. Под "единицей" здесь понимается 1 литр вместимости сосуда, в котором находится сжатый газ, или 1 кг сжиженного или растворенного газа. Таким образом, максимальное количество газов, которое можно перевозить в одной транспортной единице как неопасный груз, следующее: